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EMG Workshop 2022.

• Diewert’s Keynote speech:
• “Improving the SNA: Alternative Measures of Output, Input, 

Income and Productivity for China.”
– The production accounts in the current international System of National 

Accounts (SNA) serve many useful purposes but the Gross Domestic 
Product (GDP) concept in these accounts does not measure the income 
generated by the country’s production sector for two main reasons:
The GDP concept includes depreciation as part of output and
The GDP concept excludes capital gains or losses that accrue to 

productive assets held over the accounting period.
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Diewert, Nomura and Shimizu (2023)

• The APO and Koji Nomura have provided data on 4 types of 
Land for China for the years 1970-2020 plus 12 types of other 
capital plus quality adjusted labour.

• The 16 assets are as follows: 
– (1) IT hardware; (2) Communications equipment;  
– (3) Transport equipment; (4) Other machinery and equipment; 
– (5) Dwelling structures; (6) Non-residential buildings; 
– (7) Other structures; (8) Cultivated assets ; 
– (9) Research and development; (10) Computer software; 
– (11) Other intangible assets; (12) Net increase in inventory stocks; 
– (13) Agricultural land; (14) Industrial Land; 
– (15) Commercial Land and  (16) Residential Land.  
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Empirical Works:

 Total Factor Productivity Estimates for China using Gross Output as the 
Measure of Output.

 The Decomposition of Chinese Real Gross Income Growth into 
Explanatory Factors.

 A Nonparametric Decomposition of Gross Output Growth for China.
 Decomposing Net Income Growth.

• Diewert Morrison Kohli, Decomposition of  output growth, 
Diewert Fox,  Decomposition of TFP into tech + efficiency.

• →Flexible Functional Forms Using Macroeconomic 
Data.
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Key Question: Why is it Important to Estimate Aggregate 
Production Functions or their Dual Representations?

• Estimates for dual representations of aggregate technology sets 
are important:

• (1) They can generate estimates of aggregate technical progress;
• (2) They can generate estimates of the biases of technical change 

and
• (3) They lead to estimates for various demand and supply 

elasticities.
• Index number methods are available for measuring Total Factor 

Productivity and technical progress, as are nonparametric 
methods, but these methods cannot estimate elasticities or 
biases in technical change.

5



Should we Estimate Gross Output or GDP Functions or 
Joint Cost Functions?

• If we are using national accounts data to measure technology sets, then we
argue that it is better to estimate joint cost functions rather than gross output (or
GDP) functions. We define these functions as follows.

– Let S be the technology set of a production unit. We assume that S is a
nonempty, closed cone that exhibits free disposal of inputs and outputs.

– S is the set of nonnegative feasible output vectors y ≡ [y1,…,yM]T that can
be produced by nonnegative input vectors x ≡ [x1,…,xN]T.

• Notation: y and x are column vectors. The transpose of y and x are yT

and xT.
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– Suppose the production unit faces the strictly positive output price vector p
≡ [p1,…,pM]T and the strictly positive input price vector w ≡ [w1,…,wN]T.

– The gross output function, G(p,x) for this production unit is defined as
follows:
(1) G(p,x) ≡ max y {pTy : (y,x)∈S}.

• Alternative names for this function are the national product function
Samuelson (1953; 10), the gross profit function Gorman (1968), the
conditional profit function McFadden (1966) (1978), the variable profit
function Diewert (1973), the GDP function Kohli (1978) (1991).

• Thus G(p,x) is the maximum revenue the production unit can generate if it
faces output prices p and uses the input vector x to produce the revenue
maximizing output y which solves the constrained optimization problem.
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• If intermediate inputs are included in the vector y (indexed by negative signs),
then G(p,x) is a value added function or at the national level, it is a GDP
function. The properties of this function are studied by McFadden (1966)
(1978), Diewert (1973) (1974) (2018) and others.

– Note that we are assuming constant returns to scale in production so that
G(p,x) is linearly homogenous in p for fixed x and is linearly homogeneous
in x for fixed p.

– If G(p,x) is differentiable at a point p, x, Hotelling’s Lemma (1932; 594)
implies that the vector of output supply functions regarded as functions of
p and x, y(p,x), can be obtained by differentiating G(p,x) with respect to
the components of p:

(2) y(p,x) = ∇p G(p,x).
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• Samuelson’s Lemma (1953; 10) (see also Diewert (1974; 140)) implies that the
producer’s system of inverse input demand functions regarded as functions of p
and x, w(p,x), can be obtained by differentiating G(p,x) with respect to the
components of x:
(3) w(p,x) = ∇x G(p,x).

• Instead of conditioning on output prices p and input quantities x, the production
unit’s joint cost function, C(y,w), is defined as the minimum cost of producing
a given output vector y, and hence conditions on input prices w and the output
quantities y:

(4) C(y,w) ≡ min x (wTx : (y,x)∈S}.

– Under our strong regularity conditions on the set S, it can be shown that
C(y,w) is linearly homogeneous in the components of y holding w constant
and is linearly homogeneous in the components of w holding y constant;
see for example, Diewert (2018).
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• If C(y,w) is differentiable at a point y,w, then differentiating C(y,w) with
respect to the components of y will generate the vector of marginal costs.

• If the producer takes output prices as being fixed and there are competitive
markets, then this vector of marginal costs will be equal to the vector of
selling prices p.

• Thus the production unit’s system of inverse output supply functions, p(y,w),
can be obtained by differentiating C(y,w) with respect to the components of y:
(5) p(y,w) = ∇y C(y,w).

• Shephard’s Lemma (1953) implies that the production unit’s system of input
demand functions regarded as functions of y and w, x(y,p), can be obtained by
differentiating C(y,w) with respect to the components of w:
(6) x(y,w) = ∇w C(y.w).
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• Thus we have two alternative methods for estimating a representation of the
technology set S:

• The first representation assumes a functional form for the gross output
function, G(p,x), and uses equations (2) and (3) as estimating equations.

• The second representation assumes a functional form for the joint cost function,
C(y,w), and uses equations (5) and (6) as estimating equations.

Question:
• Can we choose which of these two representations is “best”?
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Use of the Joint Cost Function as the Representation of 
Technology.

• Consider the specialization of the general joint cost function C(y,w) defined by
(4):
(7) C(y,w) ≡ Σm=1

M cm(w)ym.
• The function cm(w) is the unit cost function that is dual to the single output

constant returns to scale production function for sector m, ym = fm(xm) for m =
1,…M where xm is the vector of inputs used by sector m.

• This is the small open country production framework considered by Samuelson
(1953) in his seminal paper.
– Note that the aggregate input vector x is equal to Σm=1

M xm and the mth
output price is equal to pm = cm(w) for m = 1,…,M.

– Note also that by applying Shephard’s Lemma to each sector, we can deduce
that xm = ∇wcm(w)ym for m = 1,…,M.
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• Making use of these equalities, differentiate both sides of (7) with respect to the
components of w. We obtain:
(8) ∇wC(y.w) = Σm=1

M ∇w cm(w)ym = Σm=1
M xm ≡ x.

• Now further specialize the unit cost functions cm(w) to be linear functions of
w:
(9) cm(w) ≡ Σn=1

N wndnm ; m = 1,…,M
where the dnm are NM constants.

This means that the sectoral production functions are Leontief (no substitution)
production functions.

• Define the N by M matrix of the dnm as C ≡ [dnm]. Substitute definitions (9) into
(7) and we obtain the expression for the overall joint cost function:
(10) C(y,w) = Σm=1

M Σn=1
N wndnmym = wTDy.
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• Thus the joint cost function for this very special case of Leontief sectoral
production functions turns out to be a bilinear form in the vectors of input prices
w and of output quantities y.

• Equations (5) and (6) for this special case turns out to be the following
estimating equations:

(11) pt = DTwt ;
(12) xt = Dyt

where pt, wt, yt and xt are the period t vectors of observed prices and quantities.
• The estimating equations defined by (11) and (12) are linear in the unknown

MN parameters but of course, there are cross equation equality restrictions.
– However, this model can readily be estimated using standard nonlinear

regression packages like SHAZAM.
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Use of the Gross Output or GDP Function as the 
Representation of Technology.

• Consider the alternative specializations of the general gross output function
G(p,x) defined by (1):
(13) G(p,x) ≡ Σm=1

M gm(x)pm ;
(14) G(p,x) ≡ Σn=1

N hn(p)xn ;
(15) G(p,x) ≡ Σm=1

M Σn=1
N xnenmpm = xTEp

where E ≡ [enm] is an N by M matrix of constants.
• The production model defined by (13) implies that output ym is equal to the

function gm(x) of aggregate input x for each output m = 1,…,M.

• In the context where outputs are produced by sectoral production functions, this
model is not very sensible: the output of sector m is produced by the sector m
vector of inputs, xm; not by the aggregate input vector x.
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(14) G(p,x) ≡ Σn=1
N hn(p)xn ;

(15) G(p,x) ≡ Σm=1
M Σn=1

N xnenmpm = xTEp

– The production model defined by (14) implies that each unit of aggregate 
input n, xn, produces the vector of outputs ∇phn(p) independently of all 
other inputs. This is also not a very sensible assumption. 

• Hence the bilinear model defined by (15), which is a special case of the models 
defined by (13) and (14), is also not a sensible model of production in the 
sectoral production function context.
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Should we Estimate Gross Output Functions or Joint 
Cost Functions?

• When we are estimating Gross Output Functions, it proves to be convenient to 
start by estimating the bilinear function defined by (15), G(p,x) = xTEp. 

• When we are estimating Joint Cost functions, it is convenient to start by 
estimating the bilinear function defined by (10), C(y,w) = wTDy.

• If we are estimating the technology of a single production unit, then it may not 
matter much whether we estimate the technology by estimating a gross output 
function or a joint cost function.

• However, the situation is different if we are estimating an aggregate technology 
that sums over sectoral production possibilities sets and we use the bilinear 
functions G(p,x) = xTEp or C(y,w) = wTDy as representations of the aggregate 
technology set using only aggregate data. 
– Estimating the bilinear gross output function G(p,x) = xTEp using 

aggregate data that has aggregated over sectors is not going to fit the 
aggregate data very well compared to using the bilinear joint  cost 
function, C(y,w) = wTDy.
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• If we estimate a national production possibilities set using national accounts
data on the national output aggregates C+G+I+X−M along with national
labour input L and the various types of capital services, Machinery and
Equipment services KM&E, structures KS and land KL, then price and
quantity data for these macroeconomic aggregates will have been constructed
by sector.

• Thus it will be the case (to some degree of approximation) that the four national
outputs, C, G, I and X, will be functions of Lm, KM&E

m, KS
m, KL

m and imports
Mm for m = 1, 2, 3, 4.

• This means that aggregate cost C(y,w) will decompose into the sum of four
sectoral cost functions; i.e., equations (7), C(y,w) ≡ Σm=1

M cm(w)ym, will hold
(approximately) where M = 4 and w is an input price vector of dimension 5.

• Thus a starting point for estimating a flexible functional form for C(y,w) is
to begin with estimating the special case of sectoral Leontief cost functions
defined by (10), which becomes (16) for our particular macroeconomic data
set:
(16) C(y,w) = Σm=1

4 Σn=1
5 wndnmym = wTDy.
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• An advantage of (16) as a functional form is that it will represent a “sensible”
technology over the entire data set. Using (16) as a starting functional form is
much preferred to using the Gross Output function defined by (15) which
becomes (17) for our macroeconomic data set:
(17) G(p,x) ≡ Σm=1

4 Σn=1
5 xn enm pm = xTEp.

• The above algebra explains why we prefer to estimate a joint cost function 
rather than a gross output function when working with macroeconomic 
data. 

• The bilinear starting functional form defined by (16) will provide a much better 
global approximation to the national technology if we are using national 
macroeconomic data than will be provided by the starting functional form for a 
gross output function defined by (17). 
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Flexible Functional Forms for Joint Cost Functions.
• A flexible functional form for a joint cost function C(y,w) has enough free

parameters so that it can provide a second order Taylor series approximation to
an arbitrary twice continuously differentiable joint cost function C*(y,w) at an
arbitrary point (y*,w*).

• For our application, we assume that both C(y,w) and C*(y,w) are linearly
homogeneous in the components of y holding w constant and are linearly
homogeneous in the components of w holding y constant.

• The linear homogeneity assumptions and the assumption of twice continuous
differentiability imply that C(y,w) will be a flexible functional form if it has
enough parameters to satisfy the conditions (18)-(20):
(18) ∇yw

2 C(y*,w*) = ∇yw
2 C*(y*,w*) ; MN restrictions;

(19) ∇yy
2 C(y*,w*) = ∇yy

2 C*(y*,w*) ; M(M−1)/2 independent restrictions;
(20) ∇ww

2 C(y*,w*) = ∇ww
2 C*(y*,w*) ;    N(N−1)/2 independent restrictions.
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• There are M2 restrictions in the matrix equation (19) but Young’s Theorem in
calculus implies that the upper triangle of matrix elements in the matrix of
second order partial derivatives of C(y*,w*) is equal to the lower triangle; i.e.,
[∇yy

2 C(y*,w*)]T = [∇yy
2 C(y*,w*)] and similarly, [∇yy

2 C*(y*,w*)]T = [∇yy
2

C*(y*,w*)].
• Thus there are only M(M+1)/2 independent restrictions on the second order

partial derivatives of C(y*,w*) in the matrix equation (19).
• But due to the linear homogeneity of C(y,w) in the components of y, Euler’s

Theorem on homogeneous functions implies the following M restrictions on
the second order partial derivatives of C(y*,w*) and C*(y*,w*):
(21) ∇yy

2 C(y*,w*)y* = 0M ; ∇yy
2 C*(y*,w*)y* = 0M.

• Since the M by M matrices ∇yy
2 C(y*,w*) and ∇yy

2 C*(y*,w*) are symmetric, 
equality of the upper diagonal elements in equations (19) plus the 2M equations 
in (21) will imply equality of all M2 elements in the matrix equation ∇yy

2

C(y*,w*) = ∇yy
2 C*(y*,w*). 
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• Since the M by M matrices ∇yy
2 C(y*,w*) and ∇yy

2 C*(y*,w*) are symmetric,
equality of the upper diagonal elements in equations (19) plus the 2M equations
in (21) will imply equality of all M2 elements in the matrix equation ∇yy

2

C(y*,w*) = ∇yy
2 C*(y*,w*).

• Similarly, due to the linear homogeneity of C(y,w) in the components of w,
Euler’s Theorem on homogeneous functions implies the following N
restrictions on the second order partial derivatives of C(y*,w*) and C*(y*,w*):

(22) ∇ww
2 C(y*,w*)w* = 0N ; ∇ww

2 C*(y*,w*)w* = 0N.

• Since the N by N matrices ∇ww
2 C(y*,w*) and ∇ww

2 C*(y*,w*) are symmetric, 
equality of the upper diagonal elements in equations (20) plus the wN
equations in (22) will imply equality of all N2 elements in the matrix equation 
∇ww

2 C(y*,w*) = ∇ww
2 C*(y*,w*). 
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The Normalized Quadratic Joint Cost Function.

• Let y* ≡ [y1
*,…,yM

*]T >> 0M be a positive reference output vector and let w* ≡
[w1

*,…,wN
*]T >> 0N be a positive vector of reference input prices. Let α ≡

[α1,…,αN]T >> 0N and β ≡ [β1,…, βM]T >> 0M be positive vector of
predetermined constants and that satisfy the linear restrictions (23):
(23) αTw* = 1 ; βTy* = 1.

• The basic Normalized Quadratic Joint Cost Function, C(y,w), is defined as
follows:
(24) C(y,w) ≡ (½)(wTAw)(αTw)−1(βTy) + (½)(yTBy)(αTw)(βTy)−1 + wTDy.

• This functional form is basically the same as the Normalized Quadratic Value
Added Function Π(p,x) that was defined in Diewert and Fox (2021).

• The M by N matrix D is unrestricted but there are some restrictions on the A and
B matrices that need to be imposed in order for the estimated joint cost function
to satisfy curvature conditions and to be a parsimonious flexible functional
form at the point y*, w*.
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• Assume that the matrix A has the following properties:

(25) A is a negative semidefinite N by N matrix;
(26) A is symmetric so that A = AT;
(27) Aw* = 0N.

• Assume that the matrix B has the following properties:

(28) B is a positive semidefinite M by M matrix;
(29) B is symmetric so that B = BT;
(30) By* = 0M.
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• Now compute the first and second order partial derivatives of C(y,w) and
evaluate them at the point (y*,w*). Using the restrictions (23, (27) and (30), we
obtain the following first and second order partial derivatives:
(31) ∇yC(y*,w*) = DTw* ;
(32) ∇wC(y*,w*) = Dy* ;
(33) ∇yy

2 C(y*,w*) = B ;
(34) ∇ww

2 C(y*,w*) = A ;
(35) ∇yw

2 C*(y*,w*) = DT.
• To prove the flexibility of the Normalized Quadratic Joint Cost Function

defined by (24) with the restrictions (25)-(30), we need to find matrices A, B and
D that lead to the satisfaction of equations (18)-(20). Using equations (33)-(35),
this is very simple: define A, B and D as follows:
(36) A ≡ ∇ww

2 C*(y*,w*) ;
(37) B ≡ ∇ww

2 C*(y*,w*) ;
(38) D ≡ [∇yw

2 C*(y*,w*)]T.
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• Under our regularity conditions on the production possibilities set S, it can be
shown that ∇ww

2 C*(y*,w*) is a symmetric negative semidefinite matrix which
satisfies ∇ww

2 C*(y*,w*)w* = 0N and hence, the matrix A will satisfy the
restrictions (25)-(27).

• It also can be shown that ∇yy
2 C*(y*,w*) is a symmetric positive semidefinite

matrix which satisfies ∇yy
2 C*(y*,w*)y* = 0N and hence, B will satisfy the

restrictions (28)-(30).

• This establishes the flexibility of the basic Normalized Quadratic Joint Cost
function.
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Estimating Equations.
• Our data are based on Chinese National Accounts data for the years 1970-2020 

and are described in Diewert, Nomura and Shimizu (2023).

• The data were constructed by Koji Nomura and other researchers associated 
with the Asian Productivity Organization.

• The four outputs are C, G, I and X and the 5 inputs are aggregate of Labour, 
Machinery and Equipment and other capital inputs, Structures, Land and 
Imports,  L, KM&E, KS, KL and M. 

• Denote the 4 dimensional output price and quantity vectors for year t by pt and yt

and the 5 dimensional input price and quantity vectors for year t by wt and xt for 
t = 1970,…,2021.
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• The estimating equations using the basic Normalized Quadratic Joint Cost
function defined by (24) are the equations for t = 1970,…,2020:

(39) pt = DTwt + (αTwt)(βTyt)−1Byt + (½)(wtTAwt)(αTwt)−1β − (½)(ytTByt)(αTwt)(βTyt)−2β;
(40) xt = Dyt + (βTyt)(αTwt)−1Awt + (½)(ytTByt)(βTyt)−1α − (½)(wtTAwt)(βTyt)(αTwt)−2α.
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• It turns out that Chinese output prices pt and input quantities xt have grown
enormously over our sample period so the dependent variables in equations (39)
and (40) (conditioned on the exogenous variables) generate heteroskedastic
error terms.

• This heteroskedasticity problem can be mitigated if we divide both sides of
equations (39) for year t by the year t input price index αTwt and divide both
sides of equations (40) for year t by the year t input quantity index βTyt.

• Define the normalized variables for t = 1970,…,2020:
(41) pt* ≡ pt/αTwt ; xt ≡ xt/βTyt ; wt* ≡ wt/αTwt ; yt* ≡ xt/βTyt .



• Substitute definitions (41) into (39) and (40) and we obtain the estimating
equations:
(42) pt* = DTwt* + Byt* + (½)(wt*TAwt*)β − (½)(yt*TByt*)β;
(43) xt* = Dyt* + Awt* + (½)(yt*TByt*)α − (½)(wt*TAwt*)α.
Note that the right hand sides of equations (42) and (43) are linear in the

unknown parameters which appear in the matrices A, B and D.
• Of course, there are cross equation equality restrictions that prevent us from

simply using equation by equation ordinary least squares to estimate these
parameters.

• We used the nonlinear regression option in Shazam (see White (2004)) to
estimate the unknown parameters in the above estimating equations.

• Equations (42) are the 4 output price equations that use the (normalized)
prices of C, G, I and X as dependent variables.

• Equations (43) are the 5 input quantity equations that use the (normalized)
aggregate input demands for labour, M&E, Structures, Land and Imports
as dependent variables.
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Defining the Exogenous Vectors α and β.
• The year t vectors of exogenous variables in the estimating equations (42) and

(43) are yt and wt, the year t output quantity and input price vectors.
• We choose units of measurement for the outputs and inputs so that all

output quantities and input prices for 1970 equal one; thus y1970 = 14 and
w1970 = 15.

• After this change in the units of measurement, define the sample wide average
output price vector as p* ≡ (1/51) Σt=1970

2020 pt and the sample wide average
input quantity vector as x* ≡ (1/51) Σt=1970

2020 xt.
• Define the vectors β and α as the normalizations of p* and x*:

(44) β ≡ p*/p*T14 ; α ≡ x*/x*T15.

– Since y1970 = 14, we see that βTy1970 = 1 and since w1970 = 15, it follows that
αTw1070 = 1 as well.
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Imposing Curvature Conditions on the Matrices  A and B.

• We need to ensure that our estimated A matrix is a negative semidefinite
symmetric matrix that satisfies Aw* = 05 (see (25)-(27) above). We choose our
w* to be w1970 which is the vector of ones, 15, for our empirical application to
China.

• The imposition of symmetry and negative semidefiniteness on A can be done
using a technique due to Wiley, Schmidt and Bramble (1973): simply replace the
matrix A by:
(45) A ≡ − UUT

– where U is a 5 by 5 lower triangular matrix; i.e., uij = 0 if i < j.
• The restrictions Aw* = A15 = 05 on A can be imposed if we impose the following

restrictions on U:
(46) UT15 = 05.
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• The imposition of symmetry and positive semidefiniteness on B can be
accomplished in a similar fashion: set B equal to:
(47) B ≡ VVT

• where V is a 4 by 4 lower triangular matrix; i.e., vij = 0 if i < j.
• The restrictions By* = B14 = 04 on A can be imposed if we impose the

following restrictions on V:
(48) VT14 = 04.

• The restrictions (46) and (48) imply that the maximum rank for the A and B 
matrices is 4 and 3 respectively. 

• Once the matrices A and B in the estimating equations (42) and (43) are 
replaced by 
− UUT and VVT respectively, the resulting estimating equations are no 

longer linear in the unknown parameters and a nonlinear regression package 
must be used. 
• For more details on how this nonlinear estimation works, see Diewert and 

Wales (1987) (1988). 
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The Problem of Trending Elasticities. 

• Diewert and Lawrence (2002) noted a problem that arises when a normalized
quadratic functional form is estimated: the resulting elasticities of input
demand and inverse elasticities of output supply will tend to have strong
trends if prices and quantities in the data have strongly divergent trends
over the sample period.
– Diewert and Lawrence (2002) suggested a method for dealing with this

problem: let the components of the A and B (or U and V) matrices have
linear time trends over the sample period. We implemented their method for
our Chinese data.

• Thus the matrices A and B in the estimating equations (42) and (43) become
linear functions of time t, A(t) and B(t).
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Adding Linear Trends for Cost Saving Technical 
Progress.

• In order to allow for cost saving technical progress, we add the terms
(a⋅p)(β⋅x)t and (α⋅p)(b⋅x)t involving time t to the Normalized Joint cost
function defined by (24).

• The resulting cost function is the one where the matrices A and B are functions
of time and adjusted to satisfy curvature conditions as indicated above:

(49) C(y,w,t) ≡ (½)(wTA(t)w)(αTw)−1(βTy) + (½)(yTB(t)y)(αTw)(βTy)−1 + wTDy
+ (a⋅w)(β⋅y)t + (b⋅y)(α⋅w)t

where a ≡ [a1,…,a5]T and b ≡ [b1,…,b4]T are new parameters which allow for
biased technical change. The estimating equations (42) and (43) become:
(50) pt* = DTwt* + B(t)yt* + (½)(wt*TA(t)wt*)β − (½)(yt*TB(t)yt*)β + bt + (aTwt*)tβ ;
(51) xt* = Dyt* + A(t)wt* + (½)(yt*TB(t)yt*)α − (½)(wt*TA(t)wt*)α + at + (bTyt*)tα⋅

34



• In our empirical implementation of the above model, we let time t = 0,1,2,…,51
instead of t = 1970, 1971, …, 2020.

• Thus when t = 0, the new terms at the ends of (50) and (51) vanish.
• Here are the R2 for the 9 equations in the model defined by (50) and (51):

0.9875 0.7277 0.6181 0.9265 0.9682 0.1871 0.9929 0.9266 0.4942.

• The above regression fits are not very satisfactory! 
• Moreover, if we define year t cost saving technical progress as 

−[∂C(yt,wt,t)/∂t]/C(yt,wt,t), we found that the average of these estimates was 
2.45% per year, which is far above the average index number estimate of Total 
Factor Productivity Growth that we found in our companion paper, which was 
1.20% per year over the years 1971-2020; see Diewert, Nomura and Shimizu 
(2023). 
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The Use of Linear Splines to Model Cost Saving 
Technical Progress.

• Note that the linear terms in time bt appear on the RHS of (50) and the linear
terms in time at appear on the RHS of (51) where a and b are technical change
parameter vectors.

• We replaced these linear terms with piece-wise linear functions of time
(linear spline functions). We used the residuals for the model defined by (50)
and (51) to determine the break points for the spline functions.

• The number of break points in each equation varied from 5 to 7.
• The final model had 100 parameters with 51x9 = 459 degrees of freedom.
• Here are the R2 for the 9 equations:

0.9983 0.9944 0.9718 0.9958 0.9887 0.9440 0.9980 0.9824 0.9282
• These fits for the 9 equations are satisfactory.
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Elasticities of Input Demand and Output Supply.

• The average rate of cost savings due to technical progress (expressed as a
percentage of cost for each year) was 1.34% per year.

• This is fairly close to our index number estimate of TFP for the same data
which was 1.20% per year.

• The average own price elasticities of input demand were as follows:
Labour: −0.068; M&E: −0.068; Structures: −0.426; Land: −0.175; Imports: −0.222.

• The average own inverse elasticities of output supply were as follows:
Consumption: 0.1006; Government: 0.0497; Investment: 0.1395; Exports: 0.080.

37



• However, we used our estimated second order derivatives of the joint cost
function to convert the inverse supply elasticities into regular output supply
derivatives and then we converted these derivatives into output supply
elasticities.

• The average own elasticities of output supply were as follows for our Chinese
data:
Consumption: 0.7052; Government: 1.6427; Investment: 2.6542; Exports: 1.0390.
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Conclusion.
• It is better to estimate joint cost functions rather than gross output functions

when working with macroeconomic data that aggregates over sectors.
• The Normalized Quadratic Joint Cost function can be used to model

aggregate production possibilities set but the estimation is quite complex.
• A next step in using the methodology outlined in this paper is to generalize it to

give us estimates of markups.
• Instead of setting output price equal to marginal cost, set output price equal

to a markup plus marginal cost. For an application of this methodology
which used a translog joint cost function, see Diewert and Fox (2008).

• The advantage of the present methodology is that it can better
approximate the fact that aggregate data are obtained by aggregating over
sectors and it is possible to impose curvature conditions globally on the
estimated joint cost function.
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